Apport de la RMN du solide à l'étude de matériaux fonctionnels Un tour d'horizon partiel...

Franck Fayon

Michael Deschamps*, Elodie Salager*, Pierre Florian*, Vincent Sarou-Kanian, Valérie Montouillout, Aydar Rakhmatullin, Catherine Bessada, Dominique Massiot

CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans, France

Ultra-fast MAS & high field : High-resolution ⁷Li NMR of LiVPO₄F, a promising cathode material

Paramagnetic materials = unpaired electrons = broad lines and short relaxation times !

Additional peaks - Impurities or structural defects ?

High-resolution ⁷Li NMR : Defect or impurities ? 2D HOMCOR to the rescue

DFT computations of ⁷Li NMR paramagnetic contact shift :

DFT + MAS-NMR explained the variability in electrochemistry data (formation of diluted O structural defects)

RS₂E

R.J. Messinger et al. *Chem. Mater.* 2015, *27(15)*, 5212–5221 E. Boivin, E. et al. *J. Phys. Chem. C* 2016, *120 (46)*, 26187–26198 T. Bamine et al. *J. Phys. Chem. C* 2017, *121*, 3219–3227

Atomic-scale structure aluminum oxide layers : ²⁷Al high-field NMR

Alumina layers obtained by atomic layer deposition (ALD) of trimethylaluminum onto partially dehydroxylated silica as **heterogeous catalyst**

M. Kaushik et al., Chem. Mater 33, 3335, 2021.

Atomic-scale structure aluminum oxide layers : ²⁷Al high-field NMR

Most likely Al-Si connectivities

Al1: ${}^{[4]}AI_{(4Si)} - Q_{1Al}^{[4]}$ and ${}^{[4]}AI_{(3Si)} - Q_{1Al}^{[3]}$ Al10: ${}^{[4]}AI_{(3Si)} - Q_{1Al}^{[4]}$ and ${}^{[4]}AI_{(2Si)} - Q_{2Al}^{[3]}$

Probing the location of OH groups

Al oxide layer : ~ 80% Al sites are close to –OH groups Terminal ^[4]Al(OH) aluminols signals at the surface of am-Al₂O₃ (not in sub-layer)

P. Florian

Sketch of atomic structure

Ultra-fast MAS and beyong : Increasing spectral resolution and coherence lifetimes

at 110 kHz MAS !

Increasing sensitivity – High field DNP NMR

Weakness of NMR is low sensitity

- Boltzman \rightarrow weak population difference between nuclear spin states at room temperature
 - \rightarrow e polarization is much larger : $\gamma e/\gamma^1 H \sim 660$
 - ightarrow polarization transfer from unpaired electrons to nuclei

Published on Web 09/10/2010

Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization

Anne Lesage,[†] Moreno Lelli,[†] David Gajan,[‡] Marc A. Caporini,⁵ Veronika Vitzthum,⁵ Pascal Miéville,⁵ Johan Alauzun,^{II} Arthur Roussey,[‡] Chloé Thieuleux,[‡] Ahmad Mehdi,^{II} Geoffrey Bodenhausen,^{5,⊥} Christophe Copéret,[‡] and Lyndon Emsley^{*,†}

Sample impregnation

Sensitivity gain > 100-200 Time saving up to 10⁵

Surface species Low concentration Allows NMR exp. that cannot be done...

Courtesy of C. Martineau-Corcos

Increasing sensitivity – High field DNP NMR

DNP at moderate field (9.4 T)

Signal enhancement up to x100 - x250

Allow experiments that cannot be done without DNP !

A. Venkatesh,, C. Coperet, A. Lesage, A. Rossini, JACS 142, 18936 (2020)

Current challenge : Very high-field DNP (18.8 – 28.2 T) at room temperature

- New radicals, paramagnetic ions, solvent for impregnation
- New microwave sources (pulsed)

Increasing sensitivity : MAS cryo-probe

Bruker 2019 innovation

- Cooling the probe coil and preamplifier ~20K (He gas)
- Reducing thermal noise of electronic circuits
- Increases the sensitivity up to x4
- x16 reduction of data collection time
- No sample modification
- Room temperature

Incorporation of lansoprazole in cyclodextrin MOF

¹⁵N at natural abundance, Drug loading ~ 20 %

X. Li, M. Porcino, C. Martineau-Corcos, ...R. Gref, Int. J. Pharm. 585, 119442 (2020).

Perspectives in Magnetic Resonance Imaging of materials

• A widespread tool for medical imaging of soft tissues

susceptibility-weighted image of the brain tiny venules in the cortex

Res. 0.2x0.2x1.5 mm

7.0 T

P. Balchandani and T.P. Naidich, Ultra-High-Field MR Neuroimaging, 2015

Intrinsic difficulties in rigid solids

Broad lines and usually short transverse relaxation times

Magic Angle Spinning Magnetic Resonance Imaging

¹H 3D spin echo MAS imaging with rotating gradients (synchronized with sample spinning)

Increased ¹H spectral resolution and

Selective chemical micro-imaging of ¹H

dephasing time

 \checkmark

 \checkmark

Mouse tooth attached to a piece of bone

¹H MAS 10 kHz (750 MHz)

200 µm resolution 18 h!

M. Yon et al., *Sci. Rep.* **7**, 8224 (2017)

Electrochemical in situ NMR spectroscopy and imaging

E. Salager

In-situ/operando & paramagnetic materials : Non-spinning conditions

Electrochemical in situ NMR spectroscopy and imaging

Specific methodology for paramagnetic materials

Following lithiation front during charge and discharge

Electrochemical in situ NMR spectroscopy and imaging

Diagnostic for thick electrodes

- Lithiation gradient in LTO during charge
- Homogeneous at full charge
- Delithiation gradient in LTO during discharge

Limiting ionic conduction → Modify electrode formulation

Improved protocols

Adapted slice-selection Faster spectroscopic imaging ! (relaxation phenomena during OCV ?)

Aging depends on protocol Pause in open circuit beneficial

M. Tang et al. Nature Comm. 7, 13284 (2016).

200 kHz ultra-fast MAS @ 1.0 GHz in Lyon 2022 !

Cryo-MAS @ 850 MHz in Orléans 2023

Merci pour votre attention