

Microscopie X au Synchrotron pour l'étude de matériaux complexes et expériences operando

HERMES Beamline - SOLEIL R. BELKHOU

Spatial Resolution + Chemistry, Electronic..

Time Resolution

Complex Materials, Nanostructures, In-Operando...

Dynamical Processes

> New and Advanced microscopies

Why Soft X-rays ?

- Broad energy range to detect all the elements
- High spatial resolution
- « Water window » to study liquid adn in-vivo samples
- Combination of Spectroscopy + Microscopy

Photon-electron and Photon-Photon µcroscopy

Combining two microcopies: Photon-Electron and Photon-Photon

Surface/Interface Science Depth Analysis < 10nm Spectroscopic capabilities Fast acquisition time: Parallel mode UHV and controlled gas phase environment In and Ex-situ sample preparation. Time resolved measurements

R. Belkhou & al., J. Synchrotron Rad. 22 (968) 2015 R. Belkhou: – June 22nd 2022, workshop Carmen Evolution "Bulk" hard and soft matter science Depth Analysis < 500nm No UHV requirement Raster scanning mode Easy sample environment control: High magnetic field, Cryogenic stage, wet cell, living cells

Broad Scientific programm

* Nanomagnetism and magnetic domain imaging

- > Ferro/Ferro, Ferro/Antiferro magnetic coupling
- > Current-induced magnetization switching, Magnetization dynamics,...
- Nanostructures, Nanoparticles, Buried interfaces,...
- Biogenic and geological magnetic minerals (Magnetite, Ferrites,..)

* Surface and Interface Sciences:

- > Thin film growth mode
- > Elemental, topological and morphological inhomogeneities.
- Diffusion, segregation, phase transition
- > Charge transfer, band gap mapping, electronic structure, Photoelectron diffraction....

Catalysis and surface chemistry:

- Chemical reaction mechanism
- > Catalytic reaction, adsorbate diffusion, chemical waves....

***** Soft condensed matter:

- Polymers wetting, de-wetting, Bonding, Matrix interaction, aggregation...
- Biomineralisation, Nanoparticles, ...
- Component quantization, Polymer blends,...
- > Self assembled surfactant

* Earth and environmental science:

- Trace element analysis
- Bacteria and microbes biomineralization
- Extraterrestrial and spatial dust and meteorites chemical analysis
- Bimolecular characterization and speciation maps in soils, rivers... Toxic and polluted soils
- > Archeology, Paleoclimatology,..

* Biology, pharmacology and medicine science:

- > Nuclear architecture characterization.
- > Chromosomal translocation mechanisms
- Intracellular drug probing, toxicity,
- > Biopolymer, biominerals and biomaterials
- Cell and tissue recognition in cancer research
- > Metals in cells: toxicity and physiological functions

Spectromicroscopy: Spectroscopy at nm Scale

Goal:

Measure chemistry of internal particles in C7-350 cyanobacteria cultured in controlled levels of Ca²⁺ and CO₃²⁻

Experimental:

 Planktonic cells dispersed on hydrophilic silicon nitride window. Measured dry.

Results:

- ✓ Spherical CaCO₃ particles are well defined
- ✓ CaPO₄ deposited more uniformly in cells
- ✓ Significant amounts of localized K⁺

Internal magnetic domains structure of CoNi nanotubes in the framework of 3D magnetic memories

Imaging of surface vs. bulk magnetic domains onset of nanotube

In-Operando Magnetic Imaging

Rotary stage for Magnetic Tomography

Magnetic quadripole for vectorial magnetisation Current injection...

Magnetic anisotropy evaluation: CoNi nanotubes

Collab. O. Fruchart (I. Nèel - Spintec, Grenoble)

Bloch DW's separating azimuthal magnetic domains

In-Operando X-ray Microscopy

Sample environment has to be 'tailored' for various specific applications:

- Fuel, MicroFluidic, Catalytic, Wet Cells
- Solid or liquid electrolytes, batteries....
- Organic or Inorganic solar cell
- In-Operando Nanoprobe

In-Operando X-ray Microscopy

NiCo methane reforming catalyst

A. Askari et al., ASC Catalysis. 10 (6223) 2020 (2019) Coll. Max Planck Gesellschaft

NiCo methane reforming catalyst

During DMR Ni migrates from the shell to the branches 9 bar – 1000°C

Ni is likely the primary active site, while the more readily oxidized Co may serve as an electron donor to Ni during catalysis.

X

A. Askari et al., ASC Catalysis. 10 (6223) 2020 (2019) Coll. Max Planck Gesellschaft

Liquid Flow Cell

Zone plat

Electrolyte flow

Au Li, FePO,

Lithium compositional spatiodynamics

X=1

Battery primary particles

Lithiation suppress compositional nonuniformities Not true for delithiation

ALS Synchrotron - Berkley

Photodiode

J. Lim et al., Science 353 (2016) 6299

PTYCHOGRAPHY – Sub 10nm resolution

Combining Microscopy and Coherent Diffraction

- High X-rays <u>Coherence</u> --> Better scattering signal
- Do not depends on the focusing optics
- Gives access to the Phase and the Amplitude of the scattered beam
- > Possible to achieve ultimate spatial resolution (Diffraction limit 1nm)

SELEIL New back-side illuminated CMOS Camera

* New CMOS back-illuminated camera

DhyanaX (sCMOS GSENSE400BSI)

Specifications GSENSE400BSI

* Main advantage with respect to CCD:

- High frame rate (48fps)
- High charge capacity
- Low read-out noise
- Low dark current
- Less expensive

	Value	References
Gain	Low gain, High gain or HDR mode	
Frame Rate	24 Hz Full frame (HDR) 48 Hz Full frame (LG or HG)	GPIXEL [®] datasheet (<u>www.gpixel.com</u>)
Pixel Size	$11 \times 11 \mu\text{m}^2$	TUCSEN® Dhvana95 datasheet
Sensor size	4M — 2048 × 2048 pixels 22.5 mm × 22.5 mm)	(<u>www.tucsens.com</u>)
Readout noise	< 2 e- rms (HDR & HG) & < 45 e- rms (LG)	Desiardins et al. 2019
Dark current	~ 3 e-/s/pix (-20°C)	Wang et al., 2017
FWC	30 ke- (HDR), 1700 e- (HG) & > 80 ke- (LG)	

Collab. Detector Group - SOLEIL K. Desjardin & al., J. Synchrotron Rad. 27 (2020) 1577

First PTYCHO @ HERMES

* SIEMENS Star patterned sample

Diffraction image

* Magnetotactic Bacteria: Magnetosoms

Image credit: <u>1 um</u> *R.P. Blakemore*

HR TEM

Nat. Rev. Microbiol **2004,** 2, 217.

stxm ртусно 6.2nm FRC resolution

HERMES

Ptychography at the Carbon edge

***** SIEMENS Star patterned sample @ 285eV

(a)

ΡΤΥCΗΟ

Diffraction Pattern

3.64 4 mm First Ptychography measurements at the

Carbon edge: New opportunity for biology, soft matter, environmental science...

N. Mille & al., Nature Com. 3 (8) 2022.

R. Belkhou: – June 22nd 2022, workshop Carmen Evolution

* Carbon Nanotubes

ptychography

STXM

Spectro - Ptychography

Hematite-based photoelectrochemical activity enhancement upon annealing in oxygen deficient atmosphere

Spectro-ptychography reveals Ti $L_3 t_{2g}$ shift of 0.11 eV in surface compared to bulk, most probably related to formation of surface TiFeO_x (ilmenite-like) phase.

Conclusions & Outlooks

 Chemical, Electronic & Magnetic mapping at spatial resolution (<10nm) on a regular basis [= better Science] (High Flux and Coherence)

- Higher thoroughput--->Automation/high thoroughput experiments might interest industries
- Bring X-ray microscopy to an unprecedent level:
 Faster, Smaller and more Efficient

Other microscopy beamlines at SOLEIL: ANATOMIX (Tomo), ANTARES (Nano ARPES), NANOSCOPIUM (Hard X-ray microscopy), LUCIA (Tender X-ray microscopy).....

The HERMES TEAM

