

Solides hybrides poreux fonctionnels : défis actuels

Christian SERRE

Institute of Porous Materials from Paris, ENS, ESPCI Paris, PSL University, CNRS, France

Les solides poreux hybrides fonctionnels

S. Wang et al., Nature Communications, 2018

Très grande diversité chimique et structurale \Leftrightarrow propriétés multiples, 'à la carte' Stabilité suffisante, mise à l'échelle/forme (tonne) OK, industrialisation en cours

De la synthèse à l'application

Défi 1 : caractérisation structurale

Défi 2 : localisation (espèces actives...)

Défi 3 : expériences in situ, operando

Réseaux (accélération de la découverte de matériaux (poreux))

Défi 1 : caractérisation structurale

Résolution structurale - MOFs

MOFs : solides cristallins \rightarrow **diffraction**

Diffraction RX Monocristal Laboratoire, synchrotron DRX poudre Laboratoire, Synchrotron Diffraction électronique, XFEL HRTEM si assez stable Sinon ⇔ PDF, modélisation, RMN...

La diffraction électronique (1)

Collab. G. Patriarche

P. Boullay (Crismat,

(Saclay, C2N)

 λ (électrons) : 2.5 pm) << RX (154 pm) \rightarrow : données - nanoparticules !!

Continuous rotation (C-Red) : le plus efficace / confirmation HRTEM et DRX poudre

B. Chen et al, en préparation

La diffraction électronique (2)

Limites actuelles

MOF mésoporeux, peu diffractant, maille large • Y 60000 Bragg peaks 40000 Intensity (counts) 20000 0 THE REPORT OF THE REPORT OF THE REPORT OF -20000 10 12 20

(hkl)	h,k,l	$d_o (nm^{-1})$	SD (%)	d (Å)	\boldsymbol{a} (Å)	c (Å)	Uncertainty (Å)
(001)	$0,\!1,\!0$	0.24	7.6	41.24	47.62	-	± 3.62
(100) or (010)	$0,\!0,\!1$	$0,\!452$	3	22,12	-	22.12	± 0.66

Visualisation directe (HRTEM) : progrès considérables

Yu Han et al, Nat Mater 2017

S. Nandi et al, unpublished results

Basses symétries Instabilité... Est-ce possible d'aller plus loin (visualisation atomes) → Accéder au modèle structural (⇔ zéolithes) ?

"Serial Crystallography"

Actuellement : microcristaux (5 microns...)

Ligne PX2, Soleil

Serial crystallography, XFEL

J. Nathan Hohman, Nature 2022

Projet ANR X-Serial (PX2, Soleil, W. Shepard)

Etendre cette méthodologie / RX Synchrotron

→ Analyse haut-débit (collecte, données). Limites : maille large, symétrie...

La 'DNP' pour la résolution structurale

D. Carnevale al, PCCP 2021

Défi 2 : localisation des espèces actives

Composites MOFs

MOF: contrôle de la porosité, sites polaires/polaires Adsorption sélective de gaz, vapeurs... Activité catalytique parfois limitée

Espèces inorganiques, hybrides, polymériques...

→ Séparation, Catalyse (H_2 , $CO_2R...$)...

Synergie pour une meilleure efficacité (separation, catalyse...)

Composites MOFs-polymères

Focused Ion Beam (FIB) - SEM : distribution spatiale de nanofeuillets de MOFs au sein d'une membrane polymérique

Résolution : Quelques dizaines de nm

J. Gascon et al., Nature Materials 2015

Composites MOFs – nanoparticules (1)

Collaboration O. Ersen (IPCMS, strasbourg)

Collab. N. Steunou, Versailles Heng Zhao

Synthèse directe (ambiante) / USPIO's (biomédecine)

Libération retard

H. Zhao et al., soumis

USPIO principalement à l'intérieur des nanoMOFs

Composites MOFs – nanoparticules (2) Sujing Wang Photodéposition de nanoparticules (RuOx) dans un MOF Ti pour la photométhanation du CO₂ Collab. ITQ (Valencia, Spain) a) S. Navalon, H. Garcia А solar simulator 800 - xenon lamp - visible light MIP-208-Ru : 600 200 nm 200 nm

MIP-208 : Ti-1,3 BDC-NH₂ ø≈4Å, Coloré, robuste

24

20

1-2 nm RuOx nanoparticles : surface externe ?

S. Wang et al Chem, 2020

A. Tissot

Shan Dai

Composites MOFs – nanoparticules (3)

Composite MOF-Cu° pour la photoréduction de l'acide formique

Dr. G. Patriarche, C2N

Localisation "précise" des NPs de Cu° difficile...

S. Dai et al ACIE 202, Chem Mater. 2021, ACIE, 2022, en révision

Composites MOFs – nanoparticules (4)

Dr. G. Patriarche, C2N

Localisation "précise" des NPs de Cu° encore très limitée...

Interfaces avec matériaux 2D

Collab. D. Aureau, Versailles

Composites MOFs-GO

M. Muschi et al., J. Mater. Chem. A, 2021

Défi 3 : expériences in situ, operando

La Cryo-diffraction électronique pour l'adsorption in situ

Visualisation directe des molécules de CO₂

Yi Cui et al, Matter, 2019

Catalyse in situ - operando

Photodissociation de l'eau

→ Nouveaux setups in situ/operando (EXAFS, Raman, RX, RMN, Microscopie...)

MOFs hétérométalliques Brevet PSL-CNRS/UPV-ITQ: EP20382882.7, 2020

Projet ANR MOFtoH2 (2022-2026)

Réseaux : vers l'accélération de la découverte de nouveaux matériaux (poreux)

De la synthèse aux propriétés

Elaboration et optimisation de MOFs fonctionnels très fastidieuse Comment accélérer le processus...

Limitations actuelles

Méthodes de synthèse

Caractérisations

Haut débit (Microfluidique)

Traitement des données

Evaluation in situ (fluidique)

Mesure propriétés haut-débit

Modélisation

Prédiction structurale Mécanismes réactionnels Propriétés

Machine learning

→MOFs : pas encore maturité d'autres classes de matériaux...

PEPR DIADEM - MOFLEARNING

DIADEM 2022-2026. Budget : 85 M dont 1,3 M € MOFlearning / Appels à projets en 2024

ENJEUX	OBJECTIFS
 Accélérer la découverte des matériaux poreux MOFs Couplage matériaux poreux-interactions spécifiques Séparation, purification des gaz stratégiques Matériaux pour l'énergie (production de H₂, conversion CO₂) 	 Méthodes d'apprentissage automatique (descripteurs (taille pores, sites acides/basiques) Analyse bases de données Synthèse et caractérisation haut- débits (hydro/solvothermal) Corrélations structures (synthèse) – propriétés, guidées par l'IA

Partenaires MOFsLearning :

Modélisation : FX Coudert, Chimie ParisTech- PSL Mesures Propriétés : D. Meyer, CEA - Marcoule

Domaine d'Intérêt Majeur - MaTerRE

Axes thématiques

- Capture Valorisation H₂ et CO₂
- * Stockage, Récupération d'énergie éco-compatibles
- * Matériaux de Construction
- Mines Urbaines, Recyclage, éco-conception

Axes transverses

- Numérique (modélisation, Intelligence artificielle)
- Haut débit, Fluidique
- Matériaux Architecturés
- Caractérisation Avancées
- Socio-économie de la transition énergétique

2022-2026, Budget annuel : 2,3 M € 500 chercheurs, 10 industriels

